High-Order Shock-Fitting Method for Hypersonic Flow with Graphite Ablation and Boundary Layer Stability

نویسندگان

  • Clifton H. Mortensen
  • Xiaolin Zhong
چکیده

A high-order shock-fitting method with thermochemcial nonequilibrium and finite rate boundary conditions for graphite ablation is presented. The method is suitable for direct numerical simulation of boundary layer stability with graphite ablation. Validation with three computational data sets and one set of experimental data is shown. Stability results of the method for a 7 half angle blunt cone at Mach 15.99 are compared with ideal gas computations that set their wall temperature and wall blowing from the real gas simulation. Weak planar fast acoustic waves are used to perturb the steady base flow. In the nose region wall normal velocity fluctuations increase three orders of magnitude and then decrease rapidly as the wall mass flux decreases on the cone surface. In the nose region perturbation amplitudes of vibration temperature are two orders of magnitude larger than perturbation ampitudes of translation-rotation temperature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Gas and Surface-Ablation Effects on Hypersonic Boundary-Layer Instability over a Blunt Cone

There has been little research into surface-ablation effects on hypersonic boundary-layer instability, and the current understanding of real-gas effects on hypersonic boundary-layer instability still contains uncertainties. The objective of the current work was to analyze the hypersonic boundary-layer transition process using linear-stability theory, inwhich surface ablation, aswell as real-gas...

متن کامل

High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition

Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies ...

متن کامل

Analytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations

An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...

متن کامل

Numerical Simulation of Shock-Wave/Boundary/Layer Interactions in a Hypersonic Compression Corner Flow

Numerical results are presented for the shock-boundary layer interactions in a hypersonic flow over a sharp leading edge compression corner. In this study, a second- order Godunov type scheme based on solving a Generalized Riemann Problem (GRP) at each cell interface is used to solve thin shear layer approximation of laminar Navier-Stokes (N-S) equations. The calculated flow-field shows general...

متن کامل

A High-Order Cut-Cell Method for Numerical Simulation of Hypersonic-Boundary Transition with Arbitrary Surface Roughness

Hypersonic boundary-layer transition can be affected significantly by surface roughness. Many important mechanisms which involve transition induced by arbitrary roughness are not well understood. In this paper, we propose a new high-order cut cell method which combined the non-uniform finite difference method for discrete points near the curvilinear boundary and shock-fitting method for the bow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012